TUMOR-PROMOTING COMPOUNDS FROM EUPHORBIA COOPERI

DI- AND TRIESTERS OF 16-HYDROXY-12-DESOXY-PHORBOL.

M. Gschwendt and E. Hecker

Biochemisches Institut, Deutsches Krebsforschungszentrum, Heidelberg, Germany

(Received in UK 19 December 1969; accepted for publication 16 January 1970)

By a combination of liquid-liquid extraction methods with adsorption chromatography from latex of Euphorbia cooperi⁺⁾ two new irritant and tumor promoting compounds C (I), C' (II) have been isolated.

The mass spectra of C (M^+516) and C' (M^+558) show that they are di- and triesters respectively of the same parent alcohol (III: mw = 364). Further, the fragmentations $M^+ - 88$ and $M^+ - 100$ in the diester C and $M^+ - 60$, $M^+ - 88$ and $M^+ - 100$ in the triester C' indicate that in both compounds the estergroups may contain the same C_4^- (88) and C_5^- acid with one C=C-double bond (100) respectively in addition to acetic acid (60) in the triester C'. Acid catalysed selective transesterification (HC10₄/MeOH) of the acetic acid ester group in C' yields C.

*) We are greatly indebted to Dr.R.Dyer and Mr.G.Vahrmeijer,Department of Agricultural Technical Services, Botanical Research Institute, Pretoria, Republic of South Africa, for supply of latex. By analysis of the nmr-spectrum of I the ester groups in this triester may be further characterized and identified: the sharp singlet at 2,03 ppm is characteristic of an acetyl group, the doublet (J = 7 Hz) at 1,13 ppm of the geminal methylgroups of an isobutyric acid residue $(C_4$ -acid). The CH₃-peaks at 1,91 and 1,96 ppm show the third acid residue to be tiglic acid $(C_5$ -acid with one C=Cdouble bond). The couplings $(J_1=7 \text{ Hz}, J_2=1 \text{ Hz})$ of these CH₃-signals with the =CHsignal at 6,07 ppm can be shown by double resonance experiments.

Base catalysed transesterification (NaOCH₃/MeOH) from I yields a monotigliate IV. Trials to obtain the parent alcohol failed, instead by a rapid reaction IV ($R_{\rm p}$ o,13, thin layer, Silicagel b/e⁺⁾=1/3) is converted to a less polar compound ($R_{\rm p}$ o,37 system as IV). Acetylation of IV with Ac₂O/pyridine yields a monotigliate-diacetate (V; M⁺ 530) with an uv-spectrum $\sum_{\rm max}^{\rm CH_3OH}$ (245), 330 nm (£5600,70) max very similar to phorbol-12,13,20-triacetate (1). Also the nmr-spectrum of V (chart 1, table 1) shows most of the signals of phorbol-12,13,20-triacetate with similar chemical shifts and multiplicities (1,2). However, the signal of one of the CH₃-groups at the cyclopropanering (CH₃-16 or 17) as well as the signal of the -CH(OAc) group (H-12) as exhibited by phorbol-12,13,20-triacetate are not present in V. Furthermore a new signal of a -CH₂(OAc) group at 4,16 ppm and of a -CH₂ group at 2,1 ppm is observed in V. These results suggest that the parent alcohol of I and II is an isomer of phorbol with OH-12 translocated from position 12 to either one of the methylgroups in position 16 or 17 (see III).

Compound $R_{\rm F}$ 0,37 obtained in trials to obtain III from IV (see above) is identical with crotophorbolon (VI) by melting point, mixed melting point, ir-spectra and $\alpha \frac{20}{D} = 173^{\circ}$ (1% in EtOH). VI is one of the products of the reaction of phorbol

+) b = benzene, e = ethylacetate

with 0,02 n sulfuric acid (2,3). The transformation of IV to crotophorbolon (VI) may be understood as base catalysed elimination of OH-16 (see scheme). It thus proves the structure of the parent alcohol III as derived from nmr-measurements including the absolute configurations at seven out of eight asymmetric centres at C-4,8,9,Io,I1,I3,I4. Thus III is a 4,9,I3,I6(or 17),20-Pentahydroxy-tigliadien-1,6-on-(3). The absolute configuration at the eighth asymmetric centre (at C-15) may be judged from sterical considerations using Dreiding models. With the -CH_OCOCH_ group of V in B-(endo)-position a strong intramolecular H-bridge from the estercarbonyl to OH-4 may be expected. Because the position of the signal of OH-4 (by D₂O-exchange) in the nmr-spectra of V and of phorbol-12,13,20-triacetate is identical OH-4 does not seem to participate in a H-bridge. Therefore most probably the -CH_OCOCH_ group in V and the -CH_OH-group in III are in a-(exo)-position, i.e. cis-configuration with respect to the reference atom H-14. From the point of view of diterpene biosynthesis too an exo-position of -CH_OH at C-15 is more likely: usually the straight chain precursor geranyl-geraniol-pyrophosphate is cyclised first and the resulting product subsequently oxygenated. In a corresponding perhydroazulene precursor of phorbol (4) the methylgroup 17 in ß-or endo-position ⁺⁾ would not be as easily accessible for hydroxylation as the methylgroup 16 in a-or exo-position. Therefore III is most probably 4,9,13,16,20-Pentahydroxytiglia-dien-1,6-on-(3).

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

REFERENCES

- E. Hecker, Ch.v.Szczepanski, H.Kubinyi, H.Bresch, E.Härle, H.U. Schairer and H.Bartsch, <u>Z. Naturforsch</u>. <u>21b</u>, 1204 (1966).
- E. Hecker, H. Bartsch, H. Bresch, M. Gschwendt, E. Härle, G. Kreibich,
 H. Kubinyi, H.U. Schairer, Ch.v. Szczepanski and H.W. Thielmann, <u>Tetrahedron</u> <u>Letters</u> (London) <u>1967</u>, 3165.
- 3. H.W. Thielmann and E. Hecker, Lieb.Ann.Chem. 728, 158-183 (1969).
- 4. E. Hecker, Planta Medica, Suppl. 1968, p. 24.
- 5. M. Gschwendt and E. Hecker, Z.Naturforsch. 23b, 1584 (1968).
- +) Of both methylgroups in 15-position the β -methyl was defined as number 17 (5).

Chart 1: loo MHz nmr-spectrum of the monotigliate-diacetate (V) in $CDCl_3$ with tetramethylsilane (d = 0,00 ppm) as internal standard. Ti = signals of the tiglic acid residue.

irradiated	at ppm	observed	at ppm	change in multiplicity	removed coupling (J in Hz)
H-1	7,56	н ₃ -19	1,80	dd →→ d	<1
H-lo	3,32	н ₃ –19	1,80	$dd \longrightarrow s$ (broad)	2
H-lo	3,32	н-1	7,56	sharpenin g	-
H-7	5,66	н-8	3,06	$t \longrightarrow d$	5,5
H-7	5,66	н ₂ -5	2,46	sharpening	
н-8	3,06	н-7	5,66	d → s	5,5
н-8	3,06	н-14	1,25	d → s	5
н-14	1,25	н-8	3,06	$t \longrightarrow d$	5
H-11	2,06	н ₃ -18	o,92	d→ s	6

Table 1: Decoupling in the nmr-spectrum of V by double resonance experiments.